Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Baba, Justin S; Coté, Gerard L (Ed.)In this research, we examine the potential of measuring physiological variables, including heart rate (HR) and respiration rate (RR) on the upper arm using a wireless multimodal sensing system consisting of an accelerometer, a gyroscope, a three-wavelength photoplethysmography (PPG), single-sided electrocardiography (SS-ECG), and bioimpedance (BioZ). The study included collecting HR data when the subject was at rest and typing, and RR data when the subject was at rest. The data from three wavelengths of PPG and BioZ were collected and compared to the SS-ECG as the standard. The accelerometer and gyro signals were used to exclude data with excessive noise due to motion. The results showed that when the subject remained sedentary, the mean absolute error (MAE) for the HR calculation for all three wavelengths of the PPG modality was less than two bpm, while the BioZ was 3.5 bpm compared with SS-ECG HR. The MAE for typing increased for both modalities and was less than three bpm for all three wavelengths of the PPG but increased to 7.5 bpm for the BioZ. Regarding RR, both modalities resulted in RR within one breath per minute of the SS-ECG modality for the one breathing rate. Overall, all modalities on this upper arm wearable worked well when the subject was sedentary. Still, the SS-ECG and PPG showed less variability for the HR signal in the presence of motion during micro-motions such as typing.more » « less
-
Surface-enhanced Raman scattering (SERS) is a sensitive analytical technique capable of magnifying the vibrational intensity of molecules adsorbed onto the surface of metallic nanostructures. Various solution-based SERS-active metallic nanostructures have been designed to generate substantial SERS signal enhancements. However, most of these SERS substrates rely on the chemical aggregation of metallic nanostructures to create strong signals. While this can induce high SERS intensities through plasmonic coupling, most chemically aggregated assemblies suffer from poor signal reproducibility and reduced long-term stability. To overcome these issues, here we report for the first time the synthesis of gold core–satellite nanoparticles (CSNPs) for robust SERS signal generation. The novel CSNP assemblies consist of a 30 nm spherical gold core linked to 18 nm satellite particles via linear heterobifunctional thiol–amine terminated PEG chains. We explore the effects that the varying chain lengths have on SERS hot-spot generation, signal reproducibility and long-term activity. The chain length was varied by using PEGs with different molecular weights (1000 Da, 2000 Da, and 3500 Da). The CSNPs were characterized via UV-Vis spectrophotometry, transmission electron microscopy (TEM), ζ -potential measurements, and lastly SERS measurements. The versatility of the synthesized SERS-active CSNPs was revealed through characterization of optical stability and SERS enhancement at 0, 1, 3, 5, 7 and 14 days.more » « less
-
null (Ed.)This work focuses on the development of nanoparticle-based layer-by-layer (LbL) coatings for enhancing the detection sensitivity and selectivity of volatile organic compounds (VOCs) using on-chip mid-infrared (MIR) waveguides (WGs). First, we demonstrate construction of conformal coatings of polymer/mesoporous silica nanoparticles (MSNs) on the surface of Si-based WGs using the LbL technique and evaluate the coating deposition conditions, such as pH and substrate withdrawal speed, on the thickness and homogeneity of the assemblies. We then use the modified WGs to achieve enhanced sensitivity and selectivity of polar organic compounds, such as ethanol, versus non-polar ones, such as methane, in the MIR region. In addition, using density functional theory calculations, we show that such an improvement in sensing performance is achieved due to preferential adsorption of ethanol molecules within MSNs in the vicinity of the WG evanescent field.more » « less
-
null (Ed.)Functionalization of optical waveguides with submicron coatings of zinc peroxide (ZnO 2 ) and silica (SiO 2 ) nanoparticles (NPs) is reported that enabled selective concentration of acetone vapors in the vicinity of the waveguide, boosting the sensitivity of a mid infrared (MIR) on-chip detector. Controlled thickness was achieved by introducing precise control of the substrate withdrawal speed to the layer-by-layer (LbL) deposition technique.more » « less
-
Amino acids are the basic “building blocks” of peptides and proteins and play important roles in the physiological processes of all species. In this study, we simulated the Raman spectrum of Glycine, Tyrosine and Phenylalanine using General Atomic and Molecular Electronic Structure System (GAMESS) and Gaussian, two computational codes that perform calculations of electronic and vibrational properties of molecules. Through our work, strong bands with N-H and O-H bonds and with benzyl ring were pinpointed and identified. Our work presents insights into the importance of intermolecular bonding of amino acids in the life and physiological processes, including metabolism, signal transduction, and neurotransmission etc.more » « less
An official website of the United States government
